离散数学课教学中思维能力的培养研究

所属栏目:离散数学论文 论文作者:/
摘要

  1 背 景

  离散数学是现代数学的一个重要分支,研究离散对象的结构及其相互关系[1].离散数学的主题包括数理逻辑、集合论、图论、组合数学、数论、抽象代数、自动机理论等。离散数学被看做计算机的数学,是计算机类各专业的核心基础课程,也是计算机类专业许多核心课程(如数据结构、编译原理、数据库原理、人工智能等)的先导课程,因此,学好离散数学对于计算机类专业的学生具有重要意义。在实际教学实践中,学生要学好离散数学有一定困难,教师在选择教学内容和教学方法时也存在问题。

  2 基本思路

  离散数学是计算机类专业的核心基础课程,内容多且较抽象,学生学习离散数学时存在一定的困难。早期的离散数学教学过于数学化,如文献 [2-3] 等都是从数学的角度展开离散数学的知识讲解,其内容与计算机专业知识联系不大。随着教育部计算机科学与技术专业规范[4]的制定与推广,离散数学课程的教学内容逐渐加强了与计算机专业知识的联系。但在实际教学实践中,不同层次的院校仍然存在不少问题。

  我们对离散数学课程的教学改革进行了一系列的探索。最初我们采用耿素云老师编着的教材[2],在大一年级上、下学期各开设 4 学分的离散数学课程,讲述包括数理逻辑、集合论与图论、组合数学以及抽象代数的知识;为强化学生离散数学基础,针对计算机科学与技术专业、网络工程专业和信息安全专业的不同需求,将离散数学课程分为 3 门课程(数理逻辑、集合论与图论、代数结构),分别在大一上、下学期开设,其中集合论与图论作为 3 个专业共同的必修课程,数理逻辑作为计算机科学与技术专业的必修课程、网络工程专业的选修课程,代数结构作为网络工程专业和信息安全专业的必修课程、计算机科学与技术专业的选修课程;为适应大类招生模式和计算类专业转型,我们在计算机大类的大一下学期开设了 6 学时的离散数学基础课程,并从大二开始开设图论及其应用、代数结构、数理逻辑、组合数学与数论、形式语言与自动机等一系列离散数学课程。

  在这一系列探索中,我们遇到了一些问题:首先是课程教学目标定位的问题,其次是教学内容选择的问题,最后是教学方法与教学模式的问题。

  在课程教学目标定位方面,作为研究型综合性大学的计算机专业,学生要夯实在数学方面的基本素养,这不仅需要掌握有关逻辑与证明、集合、函数与关系、组合计数、图与树等方面的基本知识,还需要提高数学思维能力,并且强化与计算机专业知识的联系。但是目前多数教材都增加内容广度,减弱内容深度,因此如何明确课程的教学目标是首要问题。为此我们在深入学习专业规范[4]的基础上,对现有的国内外着名离散数学教材进行了调研与分析,并结合计算机大类培养的特点,选择 Rosen 编写的国外着名教材《离散数学及其应用》作为首选教材。为了进一步强化学生的离散数学基础,除了给大一下学期学生开设离散数学基础课程之外,我们还为大二至大三的学生开设图论及其应用、代数结构、数理逻辑、组合数学与数论、形式语言与自动机等一系列课程。我们将离散数学类课程的教学目标定位在不仅培养学生掌握离散结构的基础知识,还要培养学生在逻辑思维和计算思维方面的能力上,我们希望能将这两种思维能力的培养一直贯穿在离散数学类中。

  在确定离散数学课程的教学目标后,我们立足于教材对教学内容进行精心选择,在与课程组老师多次研讨的基础上,形成了离散数学基础课程以及各门选修课程的详细教学大纲,列出了基本知识点与可选知识点。

'); })();